Luminescent properties of a new red-emitting phosphor based on LaInO₃ for LED

AN TANG^a, DINGFEI ZHANG^{a,*}, LIU YANG^b, XIAOHONG WANG^a

^aCollege of Materials Science and Engineering, Chongqing University, Chongqing 400045, China ^bChongqing Academy of Science & Technology, Chongqing 401123, China

Red-emitting phosphor LalnO₃:Eu³⁺ for LED was synthesized by solid-state reaction at 1250 °C. X-ray diffraction, particle size analyzer and spectrometer were used to characterize the phosphor. The prepared LalnO₃:Eu³⁺ phosphor has an orthorhombic crystal structure with pure phase and the average diameter of LalnO₃:Eu³⁺, Bi³⁺ particles is about 2.15 µm. The phosphor LalnO₃:Eu³⁺ can be efficiently excited by near ultraviolet and blue light to emit intense red light at 612 nm due to the Eu³⁺ transition of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$. The emission intensity is the strongest when the Eu³⁺ content reaches 0.20 mole fraction. The optimal Bi³⁺ concentration in the LalnO₃:0.20Eu³⁺ is 0.03 mole fraction. The luminescence intensity of the LalnO₃:0.20Eu³⁺, 0.03Bi³⁺ is higher than that of without Bi³⁺ phosphor. The results indicate that LalnO₃:Eu³⁺,Bi³⁺ phosphor is a prospective potoluminescent material for white LED.

(Received August 27, 2011; accepted October 20, 2011)

Keywords: LaInO₃, Phosphors, Luminescence, White LED

1. Introduction

The field of application for white LED has brought about a broad attention since the white LED came out [1]. However there are two main defects in the white LED [2,3]. One is higher color temperature and the other is lower color rendering index because of lacking the red spectrum ingredient [4-6]. There are two basic ways to solve those problems. Firstly, the blue LED chip is coated by red and green emitting phosphors to obtain a white source [7]. Secondly, the UV LED chip combines with three primary colors (red, green and blue) to get a promising white light fabrication [8]. Regardless of the both ways, it is necessary to develop red-emitting phosphors. At present the commercial Y₂O₂S:Eu³⁺ red phosphors for white LED have some deficiencies such as chemical unsteadiness, low luminescent efficiency and intensity [9,10]. Therefore getting high-quality red phosphors has received much concern.

Indates doped with rare-earth ions are considered as photoluminescent and cathodoluminescent phosphors. Alkali earth indate phosphors show excellent photoluminescent properties. Kao et al. doped Pr^{3+} in the $SrIn_2O_4$ phosphor and found that the hue of $SrIn_2O_4$: Pr^{3+} was obviously more orange-red than that of $Y_2O_2S:Eu^{3+}$ [11]. Yang et al. prepared the phosphor $SrIn_2O_4:Eu^{3+}$ by combustion and concluded that the phosphor could emit intense red light under UV and blue light excitation [12]. Rare-earth indates belongs to the materials that are stable. Generally they don't absorb moisture and they are practically insoluble in acid. But there are no reports on the rare-earth indate phosphors. In this work, we synthesized $LaInO_3:Eu^{3+}$ red-emitting phosphors and investigated the luminescent properties of them. At the same time, Bi^{3+} -doped $LaInO_3:Eu^{3+}$ phosphors were also researched.

2. Experimental

The phosphors of LaInO₃:Eu³⁺, Bi³⁺ were prepared by the high temperature solid-state reaction method. La₂O₃(99.99%), In₂O₃(99.99%), Eu₂O₃(99.99%) and Bi₂O₃(analytical grade) were used as the starting materials. They were weighed in right stoichiometric ratio. After the corresponding materials were entirely mixed and pulverized in an agate mortar, the mixture was put into an alumina crucible. It was preheated at 600 °C for 4h and next heated at 1250 °C for 6h at air atmosphere in an electric furnace. Then it was cooled in air with the furnace.

The phase composition of the phosphor was checked by X-ray diffraction (XRD) analysis with Cu K α radiation under 40 kV and 150 mA. The particles size distribution was observed by the Shimadzu SA-CP3. The excitation and emission spectra were examined by RF-5301 molecular fluorescence spectrometer whose sensitivity parameter was low. Every sample was tested three times and the slit width of the excitation and emission was 3 nm. The above experiments were carried out at room temperature.

3. Results and discussion

3.1 XRD analysis and size distribution characterization

Fig. 1 shows the XRD patterns of the LaInO₃:Eu³⁺ and LaInO₃:Eu³⁺, Bi³⁺ samples prepared at 1250 °C. The XRD peaks of the samples were observed to be completely in accord with the Joint Committee on Powder Diffraction Standards (JCPDS No. 09-0034). According to the JCPDS, pure LaInO₃ has an orthorhombic crystal structure with the lattice parameters of *a*=1.140 nm, *b*=0.8198 nm and *c*=1.180 nm. The XRD result shows that the host structure of matrix LaInO₃ is not changed by doping a small amount of Eu³⁺ and Bi³⁺. However the peak intensity of the Bi³⁺-doped sample is stronger than that of no doping-Bi³⁺ sample owing to the crystallinity increasing. Because the ionic radii of Eu³⁺ (0.107 nm) and Bi³⁺ (0.117 nm) are similar to La³⁺ (0.116 nm) [13], it can be suggested that both Eu³⁺ and Bi³⁺ occupy La³⁺ in the matrix LaInO₃.

Fig. 1. XRD patterns of $LaInO_3$: Eu^{3+} and $LaInO_3$: Eu^{3+} , Bi^{3+} samples prepared at 1250 °C.

The particle size distribution of the LaInO₃:Eu³⁺, Bi³⁺ phosphor calcined at 1250 °C is shown in Fig. 2. The particles illustrate a narrow size distribution and the average diameter of the particles is about 2.15 μ m, which indicates that the particles are fit to fabricate the solid-light devices [14].

Fig. 2. Particle size distribution of $LaInO_3$: Eu^{3+} , Bi^{3+}

phosphor. 3.2 Luminescence properties of LaInO₃:Eu³⁺ phosphors

The excitation spectrum of phosphor La_{0.80}InO₃:0.20Eu³⁺ is shown in Fig. 3. The figure can be divided into two parts. The one pertains to the broad band below 361 nm and the other belongs to the narrow band above 361 nm. The broad excitation bands correspond to the charge transfer process of Eu³⁺-O²⁻ and the band gap transition of the LaInO₃ host lattice [11,15]. The narrow strong peaks are ascribed to f-f transitions of Eu³⁺, which respectively belongs to 394 nm (${}^{7}F_{0} \rightarrow {}^{5}L_{6}$), 464 nm (${}^{7}F_{0} \rightarrow {}^{5}D_{2}$) and 533 nm (${}^{7}F_{0} \rightarrow {}^{5}D_{1}$) [16]. In these peaks, there exit two intense peaks at 394 and 464 nm, which can match well with the wavelength emitted by ultraviolet and blue LED chips. That is to say, LaInO₃:Eu³⁺ phosphors can be probably used to fabricate LED as photoluminescence materials.

Fig. 3. The excitation spectrum of $La_{0.80}InO_3:0.20Eu^{3+}$.

Fig. 4 shows the emission spectra of phosphor $La_{0.80}InO_3:0.20Eu^{3+}$ excited by 394 nm and 464 nm wavelength. Both of the curves have the similar shape except for the difference of the relative intensities. The strongest peak at about 612 nm is due to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu^{3+} and the peak at around 588 nm is attributed to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of Eu^{3+} . The fact indicates that Eu^{3+} occupies the center site of asymmetry [17]. Moreover, among all of the emitting peaks, the peak at 612 nm has an apparently strongest intensity. It is also suggested that the phosphor LaInO_3:Eu^{3+} can become a good red-emitting phosphor.

The inset of Fig. 4 describes the variation of the luminescence relative intensity with different doping-Eu³⁺ content. For the phosphor LaInO₃:Eu³⁺, the emission intensity reaches the maximum when *x* value is 0.20. Once *x* value is beyond 0.20, the intensity will decrease quickly, which is considered to be the common behavior of concentration quenching. The quenching is due to the association with different effects such as the interactions among Eu³⁺, energy migration through the lattice [18,19].

Fig. 4. The emission spectra of $La_{0.80}InO_3$: 0.20Eu³⁺ and the inset is the variation of the luminescence intensity with the different content of Eu³⁺ in the LaInO₃: Eu³⁺ phosphors.

3.3 The influence of Bi³⁺ on LaInO₃:Eu³⁺ phosphors

Fig. 5 exhibits the emission spectra of the LaInO₃:0.2Eu³⁺ phosphors with the addition of Bi³⁺. Compared with no Bi³⁺ phosphor, the peak position and shape in the emission spectra of the doping-Bi³⁺ phosphor remain unchanged except the luminescence intensity. It shows that the introduction of Bi³⁺ does not alter the sublattice structure near the luminescent centers of Eu³⁺ ions [20]. It is well consistent with the result of XRD characterization. The luminescent intensity of the phosphor at 612 nm is stronger than that of without Bi^{3+} phosphor when the Bi^{3+} content is 0.03 mole fraction. For the phosphor LaInO₃:Eu³⁺ doped with Bi³⁺, the luminescence intensity increases with the increasing of Bi³⁺ content at first. The intensity achieves the maximum when the Bi3+ mole fraction is 0.03 and finally decreases with the Bi³⁺ concentration increasing. The above results show that the effect of sensitization Bi3+ on the activator Eu³⁺ depends on the Bi³⁺ concentration. Smaller Bi³⁺ contents are not propitious for the improvement of luminescence intensity, while higher Bi³⁺ concentration has a greater tendency to transfer more energy to Eu³⁺. This kind of energy transfer from Bi³⁺ to Eu³⁺ improves the photoluminescence intensity. However excessive Bi³⁺ ions in the phosphor will give rise to concentration quenching due to the aggregates of Bi³⁺[21]. The aggregates play a positive role in the trapping centers and cause the migration of excitation energy. The energy migration dissipates the absorbed energy, which results in non-radiative transition and impacts on the descent of the luminescence intensity. It is suggested that the optimal concentration of Bi³⁺ is 0.03 mole fraction and the phosphor has the strongest luminescence intensity for LaInO₃:0.20Eu³⁺, Bi³⁺ phosphor. The CIE chromaticity coordinates of the phosphors are respectively calculated to be x=0.61, y=0.32 for LaInO₃:0.20Eu³⁺ and x=0.64, y=0.31 for $LaInO_3: 0.20Eu^{3+}, 0.03Bi^{3+}$. Both of the ordinates are close to the standard of NTSC (x=0.67, y=0.33).

Fig. 5. Emission spectra of the LaInO₃:Eu⁻,Bi phosphors excited at 394 nm.

4. Conclusions

A new red-emitting phosphor LaInO₃:Eu³⁺ was synthesized by the high temperature solid-state reaction and its luminescent properties were also studied. The results show that the phosphor LaInO₃:Eu³⁺ can emit strong red light at 612 nm by the excitation of near ultraviolet light (394 nm) and blue light (464 nm). The concentration quenching of the phosphor LaInO₃:Eu³⁺ will happen when the Eu³⁺ content is beyond 0.20 mole fraction. For the Bi³⁺-doped phosphor, the luminescence intensity increases with the increasing of Bi³⁺ content and decreases when the Bi³⁺ mole fraction is beyond 0.03. Compared with the phosphor without Bi³⁺, the phosphor LaInO₃:0.20Eu³⁺, 0.03Bi³⁺ has the strongest luminescence intensity. If it is possible, this phosphor would be used as a promising photoluminescent material for white LED.

Acknowledgements

The authors gratefully acknowledge the Chongqing Sci & Tech Project (Grant No. 2010CSTC-HDLS).

References

- S. Neeraj, N. Kijima, A. K. Cheetham, Solid State Commun. 131, 65 (2004).
- [2] A. R. Zanatta, H. H. Richardson, M. E. Kordesch, Phys. Status Solidi-R. 1, 153 (2007).
- [3] Y. Arai, T. Takahashi, S. Adachi, Opt. Mater. 32, 1095 (2010).
- [4] S. Ekambaram. M. Maaza, J. Alloy Compd. 395, 132 (2005).
- [5] Z. P. Ci, Y. H. Wang, J. C. Zhang, Y. K. Sun, Physica B. 403, 670 (2008).
- [6] C. Y. Shen, Y. Yang, S. Z. Jin, J. Z. Ming, H. J. Feng, Z. H. Xu, Physica B. 404, 1481 (2009).
- [7] L. H. Yi, L.Y. Zhou, Z. L. Wang, J. H. Sun, F. Z. Gong, W. P. Wan, W. Wang, Curr. Appl. Phys. **10**, 208

(2010).

- [8] M. M. Haque, D. Kim, Mater. Lett. 63, 793 (2009).
- [9] S. Neeraj, N. Kijima, A. K. Cheetham, Chem. Phys. Lett. 387, 2 (2004).
- [10] F. Xiao, Y. N. Xue, Q. Y. Zhang, Spectrochim. Acta A. 74, 758 (2009).
- [11] F. S. Kao, T. M. Chen, J. Solid State Chem. 156, 84 (2001).
- [12] Z. P. Yang, J. Tian, S. L. Wang, G. W. Yang, X. Li, P. L. Li, Mater. Lett. 62, 1369 (2008).
- [13] J. L. Huang, L. Y. Zhou, Z. P. Liang, F. Z. Gong, J. P. Han, R. F. Wang, J. Rare Earth. 28, 356 (2010).
- [14] R. P. Rao, J. Electrochem. Soc. 143, 189 (1996).

- [15] J. Liu, H. Z. Lian, C. S. Shi, Opt. Mater. 29, 1591 (2007).
- [16] Y. Guo, M. Sun, W. M. Guo, F. Q. Ren, D. H. Chen, Opt. Laser Technol. 42, 1328 (2010).
- [17] L. H. Yi, X. P. He, L. Y. Zhou, F. Z. Gong, R. F. Wang, J. H. Sun, J. Lumin. **130**, 1113 (2010).
- [18] Z. F. Qiu, Y. Y. Zhou, M. K. Lu, A. Y. Zhang, Q. Ma, Mater. Chem. Phys. **109**, 556 (2008).
- [19] Y. Guo, M. Sun, W. M. Guo, F. Q. Ren, D. H. Chen, Opt. Laser Technol. 42, 1328 (2010).
- [20] Z. L. Wang, H. B. Liang, Q. Wang, M. H. Chen, M. L. Gong, Q. Su, Phys. Status Solidi A. **206**, 1589 (2009).
- [21] Z. L. Wang, H. B. Liang, M. L. Gong, Q. Su, Opt. Mater. 29, 896 (2007).

^{*} Corresponding author: zhangdingfei@cqu.edu.cn